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ABSTRACT. We generalize Looijenga’s conjecture for smoothing surface cusp
singularities to the equivariant setting. The result provides an evidence for the
existence of the moduli stack of lci covers over semi-log-canonical surfaces.
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1. INTRODUCTION

A normal Gorenstein surface singularity (V, p) is called a cusp if the exceptional
divisor of the minimal resolution is a cycle of smooth rational curves or a rational
nodal curve, such that the exceptional divisor of the minimal resolution of (V, p)
is an anti-canonical divisor of a rational surface. It is one type of minimally elliptic
surface singularities in [15]. Let π : V → V be the minimal resolution, and let

π−1(p) = D = D1 + · · ·+ Dn ∈ | − KV |.
1
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The analytic germ (V, p) of the cusp singularity is uniquely determined by the
self-intersections D2

i of D. When n ≥ 3, we assume that Di · Di±1 = 1. If n = 2, D
is the union of two smooth rational curves that meet transversely at two distinct
points. Since D is contractible, Artin’s criterion for contractibility implies that the
intersection matrix [Di · Dj] is negative-definite.

Cusp singularities come naturally in dual pairs (V, p) and (V′, p′). Their
resolution cycles D and D′ under minimal resolutions are called dual cusp cycles.
From [10], [9], there exists a non-algebraic, but compact complex analytic surface
V whose only curves are the dual cycles D and D′. It is called the hyperbolic
Inoue-Hirzebruch surface. Contracting these two cycles we get a singular surface
V with only two cusp singularities p, p′. We call p the dual cusp of the cusp p′,
and vice versa. We also call D the dual cycle of the cycle D′, and vice versa.

Recall from [16], an anti-canonical pair (called a Looijenga pair) (Y, D) is a
smooth rational surface Y, together with an anti-canonical divisor D ∈ | − KY|.
The topology and geometry of Looijenga pairs were studied in [16], [6]. The
smoothing of cusp singularities is close related to the geometry of Looijenga pairs.
Looijenga studied the universal deformation of the hyperbolic Inoue-Hirzebruch
surface V, and proposed the following conjecture, now a theorem:

Theorem 1.1. ([16, III Corollary 2.3], [8],[4, §5]) The cusp singularity (V, p′) admits a
smoothing if and only if the dual cycle D of the dual cusp p is the anti-canonical divisor of
a Looijenga pair (Y, D).

Looijenga [16, III Corollary 2.3] proved that there exists a universal deformation
of the hyperbolic Inoue-Hirzebruch surface V and gave a proof for the necessary
condition of Theorem 1.1. The sufficient condition of Theorem 1.1 was first
proven by Gross-Hacking-Keel [8] using mirror symmetry. For a Looijenga pair
(Y, D), Gross-Hacking-Keel constructed the mirror family of (Y, D) using the log-
Gromov-Witten invariants of (Y, D), and the mirror family gives the smoothing
of the dual cusp p′ of D. The natural existence of the dual cusps p, p′ in the
Inoue-Hirzebruch surface implies the mirror symmetry property. Later in [4, §5],
Engel gave a proof of the sufficient condition of Theorem 1.1 using birational
geometry–Type III degeneration of Looijenga pairs. The proof is beautiful and
can be understood in a combinatorial way.

The main goal of this paper is to prove an equivariant version of Looijenga
conjecture. Let us first discuss our motivation. For a cusp singularity germ (W, q),
if the local embedded dimension is higher than 5, then [15, Theorem 3.13] showed
that the singularity is not a locally complete intersection (l.c.i.) singularity. In
[18, Proposition 4.1 (2)], Neumann and Wahl constructed a finite cover (V, p) of
W with transformation finite group G so that (V, p) is a l.c.i. cusp (actually a
hypersurface cusp). The finite cover is determined by the link Σ of the singularity
germ (W, q), which is, by definition, the boundary of a neighborhood around the
singularity p. The link Σ is a T2-bundle over the circle S1 and the first homology
group H1(Σ, Z) = Z ⊕ G′, where G′ is the torsion subgroup of H1(Σ, Z). The
finite cover V is determined by the surjective morphism H1(Σ, Z) = Z⊕G′ → G′

up to automorphisms of π1(Σ). The transformation group G is obtained from the
discriminant group G′. Thus we have a quotient map:

(1.0.1) µ : (V, p)→ (W, q)
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such that V/G ∼= W, and V \ {p} →W \ {q} is an unramified G-cover.
We are interested in the Gorenstein smoothings of (W, p) which are induced

from G-equivariant smoothings of the cusp (V, q). For the cusp (W, q), we denote
its dual cusp by q′, and the corresponding singular Inoue-Hirzebruch surface
by (W, q, q′), and the compact complex analytic Inoue-Hirzebruch surface by
(W, E, E′).

Since the two cusps (W, q, q′) are dual to each other, we present the smoothing
of the cusp q′ in the following theorem. Our main result is:

Theorem 1.2. The cusp (V, p′) admits a G-equivariant smoothing such that the quotient
space induces a smoothing of the cusp (W, q′) if and only if the dual cycle D of the cusp
p lies as an anti-canonical divisor in a Looijenga pair (Y, D), and the pair (Y, D) admits
a group G-action such that G acts freely on the complement Y \D, and the quotient space
(Y, D)/G, maybe after suitable resolution of singularities along D/G, gives a Looijenga
pair (X, E) such that E is the dual cycle of the dual cusp q of q′.

To prove the necessary condition of the theorem, we use the fact that for any
finite subgroup G in the automorphism group of an Inoue-Hirzebruch surface V,
the quotient space is still an Inoue-Hirzebruch surface W. We follow the method
of [4] to prove the sufficient condition, by putting the finite group action into the
combinatorial construction of Type III canonical degeneration pairs.

Our result Theorem 1.2 has applications for the moduli stack of lci covers
defined in [12], where the author constructed the virtual fundamental class on
the moduli space of lci covers over the semi-log-canonical surfaces. Surface cusp
singularities are semi-log-canonical singularities in the construction of the moduli
space of general type surface. The KSBA compactification of the moduli space
MK2,χ of general type surfaces, is the surface analogue of the moduli space of
stable curves Mg. Here K2 = K2

S, χ = χ(OS) for a surface in MK2,χ. The boundary
of MK2,χ are given by singular surfaces with semi-log-canonical singularities; see
[13] for more details. Let us only talk about the normal surface case. Then
the log-canonical surface singularities, except the locally complete intersection
singularities, quotient singularities, are given by simple elliptic singularities and
cusp singularities. The cusp singularities with higher embedded dimension (> 5)
are bad surface singularities, which have higher obstruction spaces (see [11]).
These singularities cause trouble in the construction of a perfect obstruction theory
on the moduli space MK2,χ in [12].

In order to control such bad singularities, the author introduced the lci covering
DM stack Slci → S for the semi-log-canonical surface S with higher embedded
dimension cusp singularities. The stacky structure around a cusp singularity p ∈ S
is given by the DM stack [S̃/G], where (S̃, p) → (S, q) is the lci cover as in [18,
Proposition 4.1] and G is the transformation group. Suppose that there is a Q-
Gorenstein flat family S → T of semi-log-canonical surfaces, and if there are cusp
singularities with higher embedded dimension on the fiber surface St, then we can
take the lci cover to get the lci covering DM stack. But it is hard to see of the lci
covering DM stacks form a flat family. But if there is a lci covering DM stack Slci →
S to a semi-log-canonical surface S with only cusp singularities except the l.c.i.
singularities, then any G-equivariant smoothing of S̃ locally gives a smoothing of
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the lci covering DM stack Slci → S. Thus it gives a smoothing of the underlying
semi-log-canonical surface S. In [12, §4.3.6], the author construct the moduli stack

Mlci
K2,χ of lci covers over the component MK2,χ, based on the assumption that every

Q-Gorenstein family of semi-log-canonical surfaces in MK2,χ can be obtained from
a family of lci covering DM stacks. Thus, from Theorem 1.2 we have that:

Corollary 1.3. The moduli space of lci covers over s.l.c. surfaces defined in [12, §5.3.6]
exists if there are bad cusp singularities (with embedded dimension > 5) on the semi-log-
canonical surfaces S in the moduli space MK2,χ such that the Q-Gorenstein smoothing of
these cusp singularities are induced by the G-equivariant smoothing of their lci covers.

1.1. Related work. There are two classes of log canonical surface germ
singularities (S, p). The index of the singularity p is, by definition, the least integer
N such that ω

[N]
S := (ω⊗N

S )∗∗ = OS(N ·KS) is invertible, where KS is the canonical
class of S. In the case of N = 1, the germ singularities (S, p) are given by simple
elliptic singularities and cusp singularities. Our study above focuses on the index
one case, and a key point of Theorem 1.2 is that there exist finite group G-actions
on the Inoue-Hirzebruch surface (V, p, p′) (only two points p, p′ are fixed by G)
such that the quotient (V, p, p′)/G is still an Inoue-Hirzebruch surface (W, q, q′).
Also in this setting we have to work on analytic complex surfaces.

If the index N > 1, then from [13, Theorem 4.24], the germ singularities
(S, p) are given by Z2, Z3, Z4, Z6 quotients of simple elliptic singularities, and
Z2 quotients of cusps, and degenerate cusps. Degenerate cusp singularities are
non-normal surface singularities. The Z2 quotient-cusp singularities are rational
singularities, which can not be cusp singularities any more. For such germ
singularities, the link Σ is a rational homology sphere. Let G = H1(Σ, Z) be the
finite abelian group. In [18], Neumann-Wahl constructed a universal abelian cover
(S̃, q) → (S, p) which is a Galois G-cover. The germ (S̃, q) is a locally complete
intersection cusp singularity. The local defining equations of this locally complete
intersection cusp singularity (S̃, q) were given in [18, Theorem 5.1]. Since locally
complete intersection singularity admits a G-equivariant smoothig, its quotient
gives the smoothing of the singularity (S, p). This also shows that our moduli
stack of lci covers over s.l.c. surfaces defined in [12, §5.3.6] exists if there are such
quotient-cusp singularities.

On the other hand, in [22], A. Simonetti studied the Looijenga conjecture
for Z2-equivariant smoothings of cusps singularities using log Gromov-Witten
theory and the techniques in [8]. Thus it is interesting to study the G-equivariant
smoothing of (S̃, q) which induces smoothings of the Z2 quotient-cusp (S, p).
Since the quotient (S̃, q)/G = (S, p) is not cusp singularity anymore, this provides
difficulties for the construction of the corresponding Looijenga pairs.

Acknowledgments. Y. J. thanks Chen Jiang, Yuchen Liu for valuable discussion
on semi-log-canonical singularities. Y. J. thanks P. Engel for his correspondence of
the proof of Looijenga conjecture and the wonderful talk at Kansas. This work is
partially supported by Simon Collaboration Grant.

2. INOUE-HIRZEBRUCH SURFACES WITH A FINITE GROUP ACTION

We study the Inoue-Hirzebruch surfaces together with a finite group action.
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2.1. Inoue-Hirzebruch surfaces. Let us recall the construction of Inoue-
Hirzebruch surface V in [10], [9], [16, III, §2.], [8].

Let M = Z2 be a rank two lattice, and σ ∈ SL2(Z) be a hyperbolic matrix.
Then σ has two real eigenvalues λ, 1

λ for λ > 1. Let v1, v2 be the two eigenvectors
corresponding to λ1 = 1

λ , λ2 = λ so that v1 ∧ v2 > 0. Let C, C′ be two strictly
convex cones spanned by v1, v2 and v2,−v1. Let C, C′ be their interiors which are
both preserved by σ. Denote by

D := {z = x + iy ∈ C2/M|y ∈H}

where H is the upper half-plane. Then the finite cyclic group generated by σ acts

freely and properly discontinuously on D. The quotient surface V
′

:= D/〈σ〉 is the
open Inoue-Hirzebruch surface. The compactification (Inoue-Hirzebruch surface)

V := V
′
∪ {p, p′} is obtained by adding two singular cusp points p, p′.

Let

U′C := {z = x + iy ∈ C2/M|y ∈ C}; U′C′ := {z = x + iy ∈ C2/M|y ∈ C′}

Then we have two neighborhoods V
′
C := U′C/〈σ〉 and V

′
C′ := U′C′/〈σ〉 in V

′
. Let

VC := V
′
C ∪ {p}; VC′ := V

′
C′ ∪ {p′}.

Then (VC, p) and (VC′ , p′) are the two singularity germs for the cusps p and p′,
respectively in V.

Taking the resolutions of singularities for p, p′, we get a smooth compact
complex surface V with two cycles of rational curves

D = D0 + D1 + · · ·+ Dn; D′ = D′0 + D′1 + · · ·+ D′s

corresponding to p, p′ respectively. Let V := V
′
∪ {D, D′}. Then we call V the

Inoue-Hirzebruch surface with only cycles of curves D and D′. Let

(d0, d1, · · · , dn); (d′0, d′1, · · · , d′s)

be the cycle of D and D′ given by negative self-intersection numbers, where

di =

{
−D2

i if n > 0
2− D2

i if n = 0.

The numbers d′i is defined similarly. Since both D and D′ are contractible, the
intersection matrix [Di · Dj] is negative definite, which implies that di ≥ 2 for all i,
and di ≥ 3 for some i. The generator σ is given by:

σ =

(
0 −1
1 d0

)(
0 −1
1 d1

)
· · ·
(

0 −1
1 dn

)
The duality property of the dual cusps D and D′ implies that the cycles

(d0, · · · , dn) and (d′0, · · · , d′s) have the following properties: if

(2.1.1) (d0, · · · , dn) = (a0 + 3, 2, · · · , 2︸ ︷︷ ︸
b0

, · · · , ak + 3, 2, · · · , 2︸ ︷︷ ︸
bk

)
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where ai, bi ≥ 0. Then the negative self-intersections (d′0, · · · , d′s) is obtained from
D by:

(2.1.2) (d′0, · · · , d′s) = (b0 + 3, 2, · · · , 2︸ ︷︷ ︸
a0

, · · · , bk + 3, 2, · · · , 2︸ ︷︷ ︸
ak

).

2.2. Finite group action on Inoue-Hirzebruch surfaces. Let Aut(V) be the
automorphism group of the Inoue-Hirzebruch surface V. Pinkham [20], and
Prokhorov-Shramov [21] studied the automorphism group Aut(V). We first

consider the automorphism group Aut(V
′
) for the open Inoue-Hirzebruch

surface. Let G ⊂ Aut(V
′
) be a finite order subgroup, then from the topology

of V
′

we have:

Proposition 2.1. ([21, Lemma 7.1]) The action of G on V
′

is free and the quotient W
′
=

V
′
/G is still an Inoue-Hirzebruch surface.

Thus the finite group G action on V
′

can be naturally extended to V = V
′
∪

{p, p′} with the two dual cusps p, p′ fixed. We also extend the G-action to the

compact Inoue-Hirzebruch surface V = V
′
∪ {D, D′} following [20, §2].

From [20, Page 302], for each k ∈ Z, we take a C2 given by coordinates (uk, vk).
We glue all the infinite C2’s (indexed by k ∈ Z) by:

(2.2.1)

{
uk+1 = udk

k vk;
vk+1 = 1

uk
.

Let A denote such a space. Note that Dk
∼= P1 is given by {uk+1 = vk = 0} and

D2
k = −dk. The group 〈σ〉 acts on A freely by:

σ(uk, vk) = (uk+n, vk+n).

Then we have an isomorphism:

Φ : A−
⋃

k∈Z

Dk
∼= U′C

given by:

(2.2.2)

{
2πiz1 = ω log u0 + log v0;
2πiz2 = ω′ log u0 + log v0

where ω = [d0, · · · , dn] is the irrational number which has a purely period
modified fraction expansion, and ω′ is its conjugate. (Here we also can identify Z2

(as a Z-module) generated by 1, ω). Recall that U′C := {z = x + iy ∈ C2/M|y ∈
C}. We consider Φ−1(H×H/M) and Φ is compatible with the action of 〈σ〉 on

(2.2.2). Then we glue A/〈σ〉 to H×H/M o 〈σ〉 ⊂ U′C/〈σ〉 = V
′
C and we get a

neighborhood of D in V. We denote this neighborhood by VC.
From [20, §Step II], the group G acts on the space VC. We explain the detail

action. First our lattice is M = Z2, and the Inoue-Hirzebruch surface is

V
′
= D/〈σ〉 = (H×C)/M o 〈σ〉,
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see §2.1. From [10], the Inoue-Hirzebruch surface V
′ ∼= R× τ, where τ is a S1× S1-

bundle pver S1, and
H1(τ, Z)tor = M/(σ− 1)M.

Here τ is the link of the singularity p, or p′. Now let

M := (σ− 1)−1M

be a new Z-module such that M ∼= M since (σ− 1)M = M. Let UM ⊂ SL2(Z) be
the group of hyperbolic matrices. Then from [20, §2, Theorem], the full complex
automorphism group of V, V is given by

G(M, UM)/G(M, 〈σ〉)

such that our finite group G ⊂ G(M, UM)/G(M, 〈σ〉). Here G(M, UM) = MoUM
and G(M, 〈σ〉) = M o 〈σ〉.

Now the part UM/〈σ〉 of the automorphism group naturally extends to V, V.
For the part M/M, for any element m ∈ M/M representing an element in G, we
have m acts on H×H by

m · (z1, z2) = (z1 + m, z2 + m′),

where m′ is the conjugate of m. By equation (2.2.2), m acts on the 0-th coordinate
chart of A by

m · (u0, v0) = (e2πim1 u0, e2πim2 v0)

where m = m1ω + m2, m1, m2 ∈ Q, and ω = [d0, · · · , dn], M ∼= M(ω) which is
generated by 1, ω. By iterating equation (2.2.1), we get{

ur = upr
0 vqr

0 ;
vr = u−pr−1

0 v−qr−1
0

where (
pr qr
−pr−1 −qr−1

)
=

(
dr−1 1
−1 0

)(
dr−2 1
−1 0

)
· · ·
(

d0 1
−1 0

)
.

Set

N :=
(

pr qr
−pr−1 −qr−1

)
.

By [20, Step II], (ω, 1)N = σ(ω, 1). So m acts on the r-th coordinate chart of A by

m · (ur, vr) = (e2πi(prm1+qrm2)ur, e2πi(−pr−1m1−qr−1m2)vr).

Then the M-action decends to the quotient M/M on A/〈σ〉. Thus, G ⊂
G(M, UM)/G(M, 〈σ〉) acts on VC. Although the quotient VC/G maybe not exactly
the resolution of a cusp singularity, but a resolution of the quotient singularities
will give a cusp.

Example 1. Consider the hypersurface cusp {x3 + y3 + z5 + xyz = 0} whose resolution
cycle is given by (2, 5). The cyclic group µ6 = 〈ζ〉 acts on the cusp by:

x 7→ ζx; y 7→ ζ5y; z 7→ ζ3z.

Then from [20, Example] the quotient is given by the hypersurface cusp {x2 + y4 + z7 +
xyz = 0} and the resolution cycle of this cusp is (2, 2, 4).
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The quotient by the subgroup µ3 = 〈ζ2〉 gives the cusp with resolution cycle
(3, 2, 2, 2, 2, 2), and the quotient by the subgroup µ2 = 〈ζ3〉 gives the cusp with resolution
cycle (8).

3. LOOIJENGA PAIR AND TYPE III CANONICAL DEGENERATION

3.1. Looijenga pairs. We introduce a finite group action on a Looijenga pair.

Definition 3.1. A Looijenga pair (Y, D) is given by a smooth rational surface Y, together
with a connected singular nodal curve D ∈ | − KY|.

Since the arithmetic genus pa(D) = 1, D is either an irreducible rational nodal
curve, or a cycle of smooth rational curves. For such a D, we have H1(D, Z) = Z.
Thus fixing a. generator of H1(D, Z) gives an orientation on D, and we label D as
D = D1 + · · ·+ Dn. The length of D is `(D) = n. We call D negative-definite, if
the intersection matrix [Di · Dj] is negative-definite.

Definition 3.2. The charge of a Looijenga pair Q(Y, D) is defined by the formula:

Q(Y, D) := 12 +
n

∑
i=1

(di − 3) =
n

∑
i=1

(ai − bi).

Let D′ be the dual cycle of D, then Q(Y, D′) is given by interchanging the ai
with bi from (2.1.1) and (2.1.2). We have Q(Y, D) + Q(Y, D′) = 24. A Looijenga
pair (Y, D) is called a toric pair if Y is a toric variety, and D is its boundary divisor.

There are good properties of the charge Q(Y, D) for a Looijenga pair (Y, D),
which is related to the geometry and topology property of the pair. We only
mention some useful ones, more properties can be found in [6], [7, §4]. If D is
negative-definite, then Q(Y, D) ≥ 3. Also

Proposition 3.3. ([6, Lemma 1.2]) For a Looijenga pair (Y, D), the charge

Q(Y, D) = χtop(Y− D)

The charge of the Looijenga pair measures how far the pair is being a toric pair.
The above result implies that

Proposition 3.4. ([6, Lemma 2.7]) If (Y, D) is an anticanonical pair, then Q(Y, D) ≥ 0
and (Y, D) is toric if and only if Q(Y, D) = 0.

From [7, Definition (4.4)], suppose that D represents a cusp, meaning that it is
the resolution cycle of a cusp singularity, then we say that D is rational if there
exists a Looijenga pair (Y, D) so that D is the anti-canonical divisor of the rational
surface Y. If D is a cusp such that the dual D′ to D is rational, we say that D has a
rational dual.

Proposition 3.5. ([7, Theorem (4.5)]) If D has a rational dual, then the charge Q(D) ≤
21.

Conversely, if D is a cusp and `(D) ≤ 3, Q(D) ≤ 21, then D has
a rational dual except in the following cases: (4, 11), (7, 8), (2, 4, 12), (2, 8, 8),
(3, 3, 12), (3, 4, 11), (3, 7, 8), (4, 4, 10), (4, 6, 8), (4, 7, 7), (5, 5, 8).
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3.2. Corner blow-ups and internal blow-ups. We introduce corner blow-ups and
internal blow-ups for the Looijenga pairs. For a Looijenga pair (Y, D), suppose
that there is an exceptional curve E meaning E ∼= P1, E2 = −1, then contracting E
gives a Looijenga pair

π : (Y, D)→ (Y, D).
If E ⊂ D is a component, then E contracts to a node of the cycle D. We call this

type blow-up the corner blow-up.
If E 6⊂ D, then E meets with D at a smooth point of D. Then in this case E

contracts to a smooth point of the cycle D. We call this type blow-up the internal
blow-up.

Proposition 3.6. ([6, Lemma 2.2]) If there is a Looijenga pair (Y, D) such that the
negative self-intersection sequence is (d1, · · · , dn) and the charge is Q(Y, D), then we
have

(1) Let Ỹ → Y be an internal blow-up at the point p ∈ D◦i (the interior part of
Di), then `(D̃) = `(D), and, under the natural labeling of D̃, the negative self-
intersection sequence of (Ỹ, D̃) is (d1, · · · , di−1, di + 1, di+1, · · · , dn).

(2) If Ỹ → Y is a corner blow-up of Y at the point p ∈ Di ∩ Di+1, then `(D̃) =
`(D) + 1. If `(D) = 1, i.e., D is irreducible, then the negative self-intersection
sequence of (Ỹ, D̃) is (d1 + 4, 1). If `(D) ≥ 2, and for an appropriate labeling of
the components of D̃, the negative self-intersection sequence of (Ỹ, D̃) is

(d1, · · · , di−1 + 1, 1, di+1 + 1, · · · , dn).

(3) If Ỹ → Y is an internal blow-up of Y, then Q(Ỹ, D̃) = Q(Y, D) + 1; and, if
Ỹ → Y is a corner blow-up of Y, then Q(Ỹ, D̃) = Q(Y, D).

From [8, Proposition 1.3], if we have a Looijenga pair (Y, D), there exists a
sequence of corner blow-ups (Y′, D′) such that (Y′, D′) has a toric model. This
means (Y′, D′) can be obtained from a toric Looijenga pair (Y, D) by internal blow-
ups at some number of smooth points.

3.3. Finite group action on Looijenga pairs.

Definition 3.7. Let (Y, D) and (Y′, D′) be two Looijenga pairs. An isomorphism between
these two Looijenga pairs is given by an isomorphism

f : Y → Y′

such that f (Di) = D′i for i = 1, 2, · · · , n, and f is compatible with the orientation of D
and D′. We let Aut(Y, D) be the automorphism groups for (Y, D).

Let G be a finite group. We say a Looijenga pair (Y, D) admits a G-action if G ⊂
Aut(Y, D) is a finite subgroup of the automorphism group.

We consider a special finite group G-action on a Looijenga pair. Let us
now restrict to negative-definite Looijenga pairs (Y, D). Artin’s criterion for
contractibility implies that D can be contracted to a singular cusp point

π : (Y, D)→ (Y, p).

Definition 3.8. A finite group G-action on a negative-definite Looijenga pair is called
hyperbolic type if the G-action is free on Y − D, and there exists a open neighborhood
VD ⊂ Y if D such that VD is isomorphic to the neighborhood VC constructed in §2.2
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and the G-action on VD is induced by the action on VC. Moreover, the quotient space
(VD −D)/G is isomorphic to another open analytic space VC′ in §2.2, so that adding one
cusp point q to (VD − D)/G we get a neighborhood VC′ of q.

Remark 3.9. Definition 3.8 implies that if a G-action on (Y, D) is hyperbolic, then the
quotient (Y/D)/G = (X, E) is also a Looijenga pair, where E is slao a cusp.

Remark 3.10. In general it is interesting to study the symplectic finite group G action
on a pair (Y, ω), where Y is a rational surface, and ω is a symplectic form. One can ask a
question when the quotient (Y, ω)/G still a rational surface.

3.4. The toric model of Looijenga pairs with a finite group action. We generalize
the process of internal blow-ups and corner blow-ups in the equivariant setting
using the main result in [1, Theorem 0.1].

Proposition 3.11. Let (Y, D) be a negative definite Looijenga pair endowed with a finite
group G-action. Suppose that the action is hyperbolic. Then we can extend the G-action to
the corner blow-ups and internal blow-ups, such that the toric model (Ytoric, Dtoric) also
admits an action of G with quotient the toric model of the quotient (Y, D)/G = (X, E).

Proof. The action of the finite group G on the Looijenga pair (Y, D) is hyperbolic,
which means G acts freely on Y − D. The pair (Y, D) is negative definite, so the
negative self-intersection numbers di ≥ 2 for any i, and some dj ≥ 3. Therefore,
there are no −1-curves on Y which are fixed by G. The pair (Y, D) is already G-
minimal.

Since there is a neighborhood VD ⊂ Y such that G preserves VD, then the finite
group G lies in AutC(D ⊂ Y). Thus, [1, Theorem 0.1], the internal blow-ups
and corner blow-ups can be made into G-equivariant. Therefore, we have the
following diagram:

(Ytoric, Dtoric)

π

��

oo internal blow-ups
(Ỹ, D̃)

π
��

corner blow-ups // (Y, D)

π

��
(Xtoric, Etoric) oo

internal blow-ups
(X̃, Ẽ)

corner blow-ups // (X, E)

�

The quotient (Ytoric, Dtoric)/G must give the birational model of (X, E), since it
can be obtained from (Ytoric, Dtoric)/G by internal blow-ups and corner blow-ups.

3.5. Universal deformation of Inoue-Hirzebruch surfaces. Let (V, p, p′) be the
Inoue-Hirzebruch surface with two dual cusp singularities. Looijenga [16, III
Corollary 2.3] proves that the surface V admits a universal deformation. Suppose
that there is a finite group G action on the Inoue-Hirzebruch surface V. The proof
in [16, II §2] works in the G-equivariant case, therefore implies that V admits a
universal G-deformation.

Let
V → ∆

be a G-equivariant deformation of (V, p, p′) along the cusp p′. So V0 = V, and
the cusp p keeps constant. Any fiber V t(t 6= 0) is a surface with a single cusp
singularity p = pt.
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We resolve pt in the family under the group G-action and get a family

π : Y → ∆

such that Y0 = V0 and (V0, p′) is the partially contracted Inoue-Hirzebruch
surface from (V, D, D′) with only cusp singularity p′. For t 6= 0, Yt is a simply
connected surface with an anti-canonical divisor D ∈ | − KY|. Thus Yt is rational.
Since we do a G-equivariant simultaneous resolution of the singularities pt of the
family V → ∆, for each fiber Yt in the resolution family Y → ∆, there must exist a
subgroup H ⊂ G acting faithfully on the fiber Yt. Our group G acts originally on
the surface V and V . After taking the G-equivariant resolution, the group H acts
on the fiber Yt which preserves the anti-canonical divisor Dt ∈ | − KYt |.

It is ready to introduce the Type III degeneration pairs. Consider the G-
equivariant family

π : Y → ∆.
We first make the construction of Friedman-Miranda [7] for the Type III canonical
degeneration pair work in the G-equivariant setting. We construct the following
Type III degeneration pairs.

(3.5.1) X0 =
n⋃

i=0

Vi

where
(1) V0 = (V, D, D′), the compact Inoue-Hirzebruch surface. For i > 0, the

normalization Ṽi of Vi is a smooth rational G-surface.
(2) We let Dij be the irreducible double curve of X0 lying on Vi and Vj (in

the case Vi is not normal, we may have i = j). Let Di = ∪Dij ⊂ Vi and
D̃i = π−1(Di) under π : Ṽi → Vi. Then (Ṽi, D̃i) is a G-Looijenga pair. For
i = 0, D0 = D′.

(3) (Triple point formula) For the double curve Dij above,

(Dij|Ṽi
)2 + (Dij|Ṽj

)2 =

{
−2, Dij are smooth;
0, Dij are nodal.

(4) The dual complex of the central fiber X0 is a triangulation of sphere.
(5) The quotient V0/G is, after suitable resolution of singularities, another

Inoue-Hirzebruch surface (W, E, E′).

Theorem 3.12. Suppose that the invariant part (ΩX0)
G of the cotangent sheaf ΩX0 is

nonzero. Then we have a G-equivariant family X → ∆ such that D ∈ | − KX| and
Dt = Dt ∈ Yt and X0 is the variety in (3.5.1).

Proof. We prove the theorem by first generating [7, Lemma 2.9]. Let T0
X0

and T1
X0

be the tangent sheaves so that

Ti
X0

= Exti(Ω1
X0

,OX0).

The the global tangent spaces are defined by

Ti
X0

= Exti(Ω1
X0

,OX0).

Recall that the variety X0 is called d-semi-stable, if T1
X0

= OQ, where Q ⊂ X0 is the
singular locus. We have that
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Lemma 3.13. For the variety X0, there always exists an X′0, with the same Inoue-
Hirzebruch component and double curve D0 such that X′0 is d-semi-stable.

Proof. We generalize [5, Proposition (5.14)] in this setting. Recall that Dij is the
double curve in Vi and Vj. Di = ∪Dij and we set E := ∪Di. We let D0

ij := Dij − T,
where T is the triple point locus. We know that Dij is smooth (Dij is not a nodal
rational curve since n > 1). We show that there exists a choice of isomorphisms

ϕij : D0
ij ⊂ Vi

∼→ D0
ij ⊂ Vj

where the extension ϕij of ϕij to Dij fixes the triple points and the surface X0 is
d-semi-stable by the gluing of ϕij. The triple point formula implies that (Dij|Ṽi

)2

or (Dij|Ṽj
)2 is nonzero. Our finite group G acts on X0, and the surface X0 = ∪n

i=0Vi,

where V0 = (V, D, D′) is an Inoue-Hirzebruch surface with a G-action. For i > 0,
each Ṽi → Vi is a rational G-surface. We follow the same proof as in [7, (5.14)]. Let

Gij = {divisors of degree zero on D0
ij}/ div( f )

where the f are functions on Dij, which are not zero and ∞ at the triple points
t1, t2, and f (t1) = f (t2). Then we have that

Gij
∼= C∗ ⊂ Pic0(Dij) ⊂ Pic0(E).

Let Ẽ→ E be the normalization and consider the following exact sequence

(3.5.2) 0→ H0(O∗E)→ H0(O∗Ẽ)→ H0(O∗Ẽ/O∗E)→ H1(O∗E)→ 0,

the Pic(E) is determined by the gluing from H0(O∗
Ẽ

/O∗E). From [5, Definition 1.9],
we have

ODi (−X0) = (IDi /I2
Di
)⊗ODi

(IVi /IVi JDi )

and

OE(−X0) = (IV0 /IV0 IE)⊗OE (IV1 /IV1 IE)⊗OE · · · ⊗OE (IVn /IVn IE)

where 
IDi = ideal sheaf of Di in Vi;
IVi = ideal sheaf of Vi in X0;
JDi = ideal sheaf of Di in X0.

From [5, Definition 1.13], X0 is d-semi-stable if OE(X0) = OE, which is equivalent
to T1

X0
= OQ. The locally free sheaf OE(−X0) is defined by the trivial bundles

ODij , plus the gluing defined by using

zizjzk ∈ H0(ODij(−Vi −Vj − T))

as a local section generator.
The finite group G acts on the variety X0. We can modify the gluing along Dij

by λ ∈ Aut0(D0
ij) which is compatible with the action G such that OE(−X0) has

the gluing data at a triple point tijk,
zizjzk ∈ H0(ODik (−Vi −Vk − T));
zizjzk ∈ H0(ODjk (−Vj −Vk − T));
λ−1zizjzk ∈ H0(ODij(−Vi −Vj − T)).
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At the triple point tijl , the formula is similar. Now look at the exact sequence
(3.5.2), and we have (

O∗Ẽ/O∗E
)

tijk

∼= (C∗)3/C∗.

If (C∗)3 has basis (eij, ejk, eik) and the action C∗ is the diagonal subspace, then by
the gluing, the effect on OE(X0) is to multiply the eij component at tijk by λ and
the corresponding component at tijl by λ−1. This is exactly the action of Gij on
Pic0(E), up to a power of 2. Thus, we have OE(X0) = OE. �

For the d-semi-stable G-variety X0, let

π : X̃0 → X0

be the normalization. Let T̃ → T and Q̃→ Q be the corresponding normalizations
of the locus T and Q. Since X0 is a variety with normal crossings, [5, (3.2), (3.3)]
implies that there exists an intrinsically defined subsheaf

Λ1
X0
⊂ π∗Ω1

X̃0
(log Q̃)

and a resolution

0→ Ω1
X0

/τX0 → Λ1
X0
→ π∗OQ̃ → π∗OT̃ → 0

where T̃ = T, τX0 is the torsion point of Ω1
X0

. Here the sheaf Λ1
X0

is intrinsic such
that Λ2Λ1

X0
∼= ωX0 . Choose a generating section ξ ∈ H0(T1

X0
), and via Lie bracket,

we have the map

(3.5.3) [·, ξ] : T0
X0
→ T1

X0
.

We have that
SX0 := ker([·, ξ]) ∼= (Λ1

X0
)∗.

The same proof in [7, Lemma 2.7] gives H0(X0, Λ1
X0

) = 0. We have the following
results as in [7, Lemma 2.8]:

(1) H2(T0
X0

) = 0;
(2) The natural map T1

X0
→ H0(T1

X0
) is surjective;

(3) The natural map H1(T0
X0

)⊗ H0(T1
X0

)→ H1(T1
X0

) is surjective.

The first one is from the following resolution:

0→ Ω1
X0

/τX0 → π∗Ω1
X̃0
→ π∗Ω1

Q̃
→ 0.

We have H0(V0, Ω1
V0
) = 0, see [7, (1.5.3)], which implies that H0(Ω1

X0
/τX0) = 0.

Serre duality implies that

H2(T0
X0

) ∼= H0(Ω1
X0

/τX0 ⊗ωX0)
∗.

By the construction for X0, we have

π∗ωX0 |V0 = OV0(−D)

and
π∗ωX0 |Vi = OVi , i > 0,

therefore, H0(F ⊗ ωX0) ⊂ H0(F) for any torsion free coherent sheaf F. Thus, we
get H2(T0

X0
) = 0 since H0(Ω1

X0
/τX0) = 0.
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(2) comes from the Ext spectral sequence

Ti
X0

=
⊕

p+q=i
Hp(X0, Extq(Ω1

X0
,OX0)).

(3) is from (3.5.3), since we have

0→ SX0 → T0
X0

[·,ξ]→ T1
X0
→ 0.

It is enough to show that H2(SX0) = 0, or equivalently H0(Λ1
X0
⊗ωX0) = 0 which

is true since H0(Λ1
X0

) = 0.
Now it is ready to prove the theorem. The proof is the same as in [5, (5.10)].

We assume that the sheaf (T1
X0

)G 6= 0, which implies that the G-equivariant
deformations exist.

The result then follows from a basic argument in the deformation and
obstruction theory. First let

T1
X0
⊗T1

X0
→ T2

X0

be the Lie bracket map. Since H2(T0
X0

) = 0, the Lie bracket T1
X0
⊗ T1

X0
→ T2

X0
induces

[·, ·] : H1(T0
X0

)⊗ H0(T1
X0

)→ H1(T1
X0

).

As in [7, (5.10)], we let

W1 = H0(T1
X0

) ⊂ T1
X0

,

a hyperplane since T1
X0

= H0(T1
X0

)⊕ H1(T0
X0

) and H0(T1
X0

) ∼= C. Let e ∈ T1
X0

be
mapped to 1 ∈ H0(T1

X0
) ∼= C, and

W2 = {v ∈ T1
X0
|[v, e] = 0} = {x + λe|λ ∈ C, x ∈W1, [x, e] = 0}.

Then W1 ∩W2 = {x ∈ W1|[x, e] = 0} is a hyperplane in W2. By the basic
deformation theory, we have a holomorphic map:

f : T1
X0
→ T2

X0

such that f (0) = 0, f has no linear terms, and f−1(0) is the base space of a versal
deformation of X0. As in [5, (5.10)], f−1(0) contains the smooth divisor N1 ⊂ W1
which corresponds to local trivial deformations. Then from [5, (5.10)],

f−1(0) = N1 ∪ N2

where N2 = {h(v) = 0} for

h : (T1
X0

, 0)→ (T2
X0

, 0)

such that f = g · h, and {g = 0} is the reduced germ of N1. Then N1 corresponds
to the local trivial deformations of X0, and N2−N1 corresponds to smooth rational
surface (Y, D), which is from [5, (2.5)]. Thus, the deformation theory implies that
we have that the G-surface X0 admits a smoothing π : X → ∆ satisfying the
conditions in the theorem.

�
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4. CONSTRUCTION OF TYPE III CANONICAL DEGENERATION PAIR

4.1. Integral-affine surface. We recall the integral-affine surfaces in [8], [4, §3].
A basis triangle of R2 is a triangle ∆ of area 1

2 with integral vertices in Z2 ⊂ R2.
Any two pairwise edges of a basis triangle form a basis for Z2.

Definition 4.1. ([4, Definition 3.1]) A triangulated integral-affine surface with
singularities is a triangulated real surface S, possibly with boundary such that

(1) the complement of the vertices {vi} ⊂ S of the triangulation admits an atlas of
charts into R2, whose transition functions take values in SL2(Z)n Z2.

(2) the interior of every triangle admits a chart to a basis triangle.

An integral-affine surface with singularities has a canonical orientation induced
from the standard orientation on R2. Let eij be the edge vi − vj in the triangulation
of S. Let fijk be the triangle whose counterclockwise ordered vertices are vi, vj, vk.
In this chart we can write eij = vj − vi.

Let S be a triangulated real surface by basis triangles. The boundary ∂S =
P1 + · · · + Pn is a polygon, where each Pi is integral-affine and is a line segment
between two lattice points. We assume that ∂S is maximal which means the union
of two distinct boundary components is never integral-affine equivalent to a single
line segment.

Definition 4.2. If the atlas of integral-affine charts on S − {vi} extends to all vertices
{vi}, then we say S is non-singular. Otherwise S is singular. Let Ssing denote the singular
vertices, i.e., the vertices which the integral-affine structure fails to extend.

Remark 4.3. Let fijk be a triangle formed by vi, vj, vk in the counterclockwise direction.
Let vi − vl be another edge such that vi, vk, vl form another triangle fikl in the
counterclockwise direction again. We define the self-intersection number dik by

dikeik = eij + eil .

From [4, Proposition 3.6, Proposition 3.7], dik + dki = 2 for every interior edges
eik. Also a triangulated integral-affine surface S is uniquely determined by the data of
a collection of negative self-intersections dik for each directed interior edge eik such that
dik + dki = 2.

Definition 4.4. Let (Y, D) be a Looijenga pair. The pseudo-fan of (Y, D) is a triangulated
integral-affine surface whose underlying surface S(Y,D) is the cone over the dual complex
of D.

Let ei be the edge from the cone point to the vertex corresponding to Di. Then
the negative self-intersection of ei is:

di =

{
−D2

i , n > 1;
2− D2

i , n = 1.

Also from [4, Proposition 3.9], the integral-affine structure on the pseudo-fan of
(Y, D) extends to the cone point if and only if (Y, D) is a toric pair. Here we recall
that a toric Looijenga pair (Ytoric, Dtoric) is a toric surface Ytoric such that Dtoric is
its toric boundary.

For a Type III canonical degeneration pair X0, the dual complex Γ(X0) is a
triangulation of the sphere S2. The vertices {vi} correspond to the components
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Vi, the directed edges eij correspond to double curves Dij, and triangular faces fijk
correspond to triple points in Remark 4.3.

From [4, Proposition 3.10], the dual complex Γ(X0) has a triangulated integral-
affine structure such that

dij :=

{
−D2

ij, `(Di) ≥ 2;

2− D2
ij, `(Di) = 1

where dij is the negative self-intersection of eij. Moreover, the integral-affine
structure extends maximally to Γ(X0)− ({vi|Q(Vi, Di) > 0} ∪ {v0}).

4.2. Surgeries. Let us recall the surgeries on the integral-affine surface in [4, §4].
The surgeries on the integral-affine surface are motivated by the almost toric
fibration in [25]. It is a generalization of the moment map from toric surfaces to its
moment polygon S.

Let S be a singular integral-affine surface which is homeomorphic to a disc, and
we let

∂S = P1 + · · ·+ Pn

is the union of a sequence of segments Pi such that each segment integral-affine
equivalent to a straight line segment between two lattice points. The boundary
components Pi go counterclockwise around S when i increases. Denote by

vi,i+1 = Pi ∩ Pi+1

the vertex, and let xi, yi be the primitive integral vectors emanating from vi,i+1
along Pi+1 and Pi, respectively. Then we have yi+1 = −xi. As in [4, Definition 4.2],
we define negative self-intersection di of Pi by:

diyi = yi−1 − xi = yi−1 + yi+1.

If µ : (Y, D, ω) → S is an almost toric fibration, then it is a Lagrangian fibration
whose general fiber is a smooth 2-torus, which degenerates under symplectic
reduction, over the boundary ∂S. Also the interior fibers may also degenerate
to necklaces of spheres at some finite set of points.

There are two type of surgeries on S.

4.2.1. Internal blow-up. The first one is the internal blow-up of S on the boundary
Pi. The surgery is given by:

Step I: Delete the triangle T ⊂ S which satisfies the properties:

(1) One edge eT of T is proper subsegment of Pi;
(2) T \ eT ⊂ S− Ssing belongs to the interior part of S− Ssing;
(3) T is an integer multiple n size of a basis triangle.

Step II: Let v be the unique vertex of T lying in the interior of S, and let (e1, e2)
be the oriented lattice basis emanating from v along the edges of T. The glue the
edge e2 of S − T to the edge along e1 of S − T via the unique affine-linear map
which fixes v, and maps e2 7→ e1, and preserving the line containing Pi.

The resulting integral-affine surface is an internal blow-up of S on Pi. The
singular set is Ssing ∪ {v} and n is the size of the surgery. Please see [4, Figure
3].
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4.2.2. Node-smoothing. The second one is the node-smoothing of S at the node Pi ∩
Pi+1. The surgery is:

At the node Pi ∩ Pi+1, for n ∈N, cut a segment from vi,i+1 to

v := vi,i+1 + n(xi + yi)

lying in S− ∂S. Then we glue the clockwise edge of the cut to the counterclockwise
edge of the cut by the shearing map which point-wise fixes the line containing the
cut and maps xi to the −yi.

The resulting integral-affine surface is the node smoothing at Pi ∩ Pi+1, and has
size n. The singular set is Ssing ∪ {v}.

4.2.3. Surgeries and self-intersection numbers. Similar to Proposition 3.6, an internal
blow-up of the integral-affine surface S on the boundary Pi changes the negative
self-intersections of the boundary components by:

(· · · , di, · · · ) 7→ (· · · , di + 1, · · · ).
A node smoothing at Pi ∩ Pi+1 of S changes the negative self-intersections of the
boundary components by:

(· · · , di, di+1, · · · ) 7→ (· · · , di + di+1 − 2, · · · ).
Now suppose that we have an integral-affine disc such that the adjacent edges

of ∂S meet to form lattice bases, and the negative self-intersections of Pi ⊂ ∂S are:{
di ≥ 2, for all i;
di ≥ 3, for some i.

Then from [4, Proposition 4.6], there is a natural embedding S ↪→ Ŝ where Ŝ is an
integral-affine sphere and Ŝsing = Ssing ∪ {v0} for a distinguished point v0 ∈ Ŝ \ S.

From [4, Remark 4.8, Definition 4.7], v0 ∈ Ŝ may not be integral. Since it is
rational, we take the order k refinement S[k], and Ŝ[k] = S[k] ∪ C[k], where C :=
Ŝ \ S. Thus v0 ∈ Ŝ[k].

4.3. The construction. Now we are ready to construct a Type III canonical
degeneration pair from a Looijenga pair (Y, D), together with a finite group G-
action. We first have:

Proposition 4.5. The Looijenga pair (Y, D) can be represented by a sequence of G-
equivariant node smoothings and G-equivariant internal blow-ups from a G-minimal pair.

Proof. For the Looijenga pair (Y, D), the finite group G, taken as automorphism
subgroup, lies in AutC(D ⊂ Y), thus, from [1, Theorem 0.1], the internal blow-
up and corner blow-up in §4.2.1 and can be made into G-equivariant by the G-
equivariant modifications. For the node-smoothing in §4.2.2, geometrically it is
like the smoothing of the singularity (xy = 0), and this process can be made into
G-equivariant by a suitable action of G on the node.

Thus, as a pair, we know (Y, D) can be given by a sequence of internal blow-ups
and corner blow-ups from a minimal pair, i.e., we have

(Y, D)
α−→ (Y1, D1)

β−→ (Y0, D0)

where α consists of internal blow-ups and β consists of corner blow-ups. �
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Now suppose that we have a Looijenga pair (Y, D), together with a finite group
G-action such that G acts freely on the complement Y − D. We also require that
the cycle D is negative-definite.

We perform the arguments in [4, §5] to construct a Type III canonical
degeneration pair X0 = ∪iVi, such that there exists a G-action on V0. First for
a Looijenga pair (Y, D) with a G-action, there exist a sequence of G-equivariant
internal blow-ups and corner blow-ups to a minimal pair

(Y, D)→ (Ymin, Dmin).

We can forget about the G-action so that the minimal pair has a toric model

(Ymin, Dmin)→ (Ytoric, Dtoric).

Let Storic be the moment polygon of the toric model (Ytoric, Dtoric), then we
perform the internal blow-ups and node smoothing as in §4.2 for Storic to get the
integral-affine surface S for the Looijenga pair (Y, D). Here the argument is the
same as in [4, §4] since we don’t need the G-action on the rational surfaces Vi for
i > 0. From the argument, there are totally Q(Y, D) surgeries of fixed sizes.

We can complete the integral-affine surface S to a sphere Ŝ as in [4, Proposition
4.6]. We also take an order k-refinement Ŝ[k] such that v0 ∈ Ŝ \ S is integral. The
refinement Ŝ[k] admits a triangulation into basis triangles.

Note that there may exist many such triangulations and we choose the one that
attains the minimal number of edges emanating from v0.

For each vi ∈ Ŝ[k], if vi is non-singular, then Star(vi) is the pseudo-fan of a toric
surface pair (Vi, Di). This toric surface may not admit a G-action, but we do not
need this. Suppose that we have a vertex vi ∈ Ŝ[k]sing which is singular, vi 6= v0.
Recall such a vertex vi is given by a surgery on Storic. Let vtoric

i ∈ Storic be the
preimage of this vertex under the surgery. Then we have

An internal blow-up on Storic corresponds to a node smoothing on Star(vtoric
i ).

A node smoothing on Storic corresponds to an internal blow-up on Star(vtoric
i ).

Please see [4, Figure 8] for the graph.
Thus there exists a Looijenga pair (Vi, Di) with pseudo-fan Star(vi). For

v0 ∈ Ŝ[k], [4, Lemma 5.3] showed that Star(v0) is the pseudo-fan of (V0, D′).
From the automorphism group explanation as in §2.2, the finite group G also acts
on the Inoue-Hirzebruch surface V0, so that these two dual cusps D, D′ are all
contractible. This is exactly what we want for the G-action on V0.

So let

X0 :=
⋃

vi∈Ŝ[k]

(Vi, Di)

where we identify Dij with Dji to make the nodes of Di are identified with the
nodes of Dj. It is routine to check that the triple formula holds so that X0 is a Type
III anti-canonical pair and there exists a G-action on the Inoue-Hirzebruch surface
V0. There are several modifications for the construction of P. Engel in [4, §5.4, §5.5,
§5.6] that we do not need to discuss.
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5. THE MAIN RESULT AND EXAMPLES

5.1. The proof of Theorem 1.2. We prove Theorem 1.2. Suppose the surface
cusp singularity (W, q′) admits a smoothing such that it is induced from the G-
equivariant smoothing of the cusp (V, p′). We let

π : V → ∆

be the G-equivariant smoothing of the cusp (V, p′). Recall that in §2.2, the
G-Inoue-Hirzebruch surface (V, p, p′) and (V, D, D′). We may construct the
smoothing π : V → ∆ as follows: first we take the G-equivariant smoothing of
(V, p′),

π : V → ∆

such that each fiber V t contains a cusp singularity pt for t 6= 0. Therefore, we take
the G-equivariant simultaneous resolution of singularities of {pt} to obtain

π : V → ∆

such that the generic fiber V t = (Yt, Dt) is a rational surface Yt, together with an
anti-canonical divisor Dt. This is a G-Looijenga pair. Since G acts on the family
π : V → ∆, there exists a subgroup H ⊆ G which acts effectively on the fiber V t =
(Yt, Dt). From the construction in §2.2 again, the group H acts on Yt \ Dt freely
and Dt is negative-definite which can be contracted to the cusp singularity pt. The
quotient (Yt \ Dt)/H is still an Inoue-Hirzebruch surface. We can take resolution
of singularities for Yt/H again such that the quotient is a smooth Looijenga pair
(X, E).

Conversely, suppose that there is a negative definite Looijenga pair (Y, D),
together with a finite group G-action such that after possible resolution of
singularities the quotient (Y, G)/G becomes a Looijenga pair (X, E), we need to
show that the dual cusp p′ of the cusp D admits a G-equivariant smoothing which
induces a smoothing of the dual quotient cusp q′ of q corresponding to E.

From the construction in §4.3, we have the following Type III canonical
degeneration pairs from a G-Looijenga pair (Y, D):

X0 =
⋃

i∈I,i≥0

(Vi, Di)

such that (V0, D, D′) is an Inoue-Hirzebruch surface. Also there is a G-action on
the surface V0 such that if (V, D, D′) → (V0, p, p′) is the contraction of D, D′ to
p, p′, then the G-action on V0 only has two fixed points p, p′.

Let X→ ∆ be the deformation of X0. From [24], all the components ∑i≥1(Vi, Di)
is contractible, and we get

X //

π
��

X

π��
∆

such that X → ∆ is a deformation of (V0, D, p′) which is a G-equivariant
smoothing of the cusp p′.
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Note that the fiber (Yt, Dt) of the π : X → ∆ for t 6= 0 admits a G-action such
that the G-action is free on Yt − Dt, and (Yt, Dt) is negative-definite. Then we
simultaneously contract such Dt’s and get

π : X→ ∆

which is a smoothing of (V0, p, p′).
Then we take the quotient π : X = X/G → ∆ such that it is a smoothing of

W0 = V0/G, and this is another Inoue-Hirzebruch surface (W0, q, q′). We take
simultaneously resolution of singularities for qt ∈ X t and get

X → ∆

which is a smoothing of (W0, E, q′) and the fiber (Xt, Et) is a Looijenga pair. From
Proposition 3.11, the pair (Xt, Et) is the quotient of the pair (Yt, Dt) for t 6= 0. This
gives the smoothing of the cusp q′.

5.2. Example 1. We consider an example. Let (Ṽ, p′) be a negative definite cusp
singularity whose resolution cycle (in terms of negative self-intersection numbers)
is d′ = (5, 2). This is a hypersurface cusp given by

{x3 + y3 + z5 + xyz = 0}.

From [20, Page 308, Example], this cusp admits a G = Z2-action whose quotient
is a cusp (V, p) which is also a hypersurface cusp whose resolution cycle is given
by (8).

The dual cusp p of (V, p′) is given by d = (3, 2, 2, 2, 2, 2); and the dual cusp of
(Ṽ, p′) is given by (4, 2, 2). Thus, we have the following diagram:

(Ṽ, p′) oo //

��

(Y, D)

��
(V, p′) oo // (X, E)

where (Y, D) is the hyperbolic Looijenga pair with negative self-intersection
sequence (4, 2, 2), and (X, E) is the Looijenga pair with E and the negative self-
intersection sequence is given by d = (3, 2, 2, 2, 2, 2).

From Proposition 3.6, we perform corner blow-ups and do the following:

(4, 2, 2)→ (3, 1, 1, 2)→ (2, 2, 0, 1, 2)→ (2, 1, 0, 1, 1, 1).

The cycle (2, 1, 0, 1, 1, 1) corresponds to a toric pair, since if Dtoric is the divisor
corresponding to the negative self-intersection sequence (2, 1, 0, 1, 1, 1), then
Q(Dtoric) = 0.

We do the same process by internal blow-down:

(3, 2, 2, 2, 2, 2)→ (2, 1, 1, 1, 1, 0).

Then in the toric model (Xtoric, Etoric), Etoric) is given by (2, 1, 1, 1, 1, 0). We can see
that the Z2 acts on (Ytoric, Dtoric) by permutation on the components of Dtoric to
get Etoric.
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5.3. Example 2. Here is another example. Let (V, p′) be a negative definite cusp
singularity whose resolution cycle (in terms of negative self-intersection numbers)
is d′ = (6, 9), which is not a complete intersection cusp since (6− 2) + (9− 2) =
11 > 4. The charge Q(D′) = 12 + (6− 3) + (9− 3) = 21. Then from Proposition
3.5, this cusp D′ has a rational dual D with negative self-intersection sequence
d = (3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2).

From [18, Proof of Theorem 4.1], t = 53− 1 = 52, and the finite cover (Ṽ, p′)→
(V, p′) is a hypersurface cusp whose resolution cycle is given by (3, 2, 2, · · · , 2︸ ︷︷ ︸

49

).

From [17, Lemma 2.5], this cusp is given by

{x2 + y3 + z56 + xyz = 0}.

Let G be the transformation group of the cover (Ṽ, p′) → (V, p′). First we have
the exact sequence

0→ H o Z→ π1(Σ)→ G′ → 0
where H ⊂ π1(Σ) = Z2 o Z is generated by (0, 1), (−1, 9). Then

G = G′ o H1(Σ, Z)tor.

The dual cusp p of (V, p′) is given by d = (3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2); and the dual
cusp of (Ṽ, p′) is given by (52). Thus, we have the following diagram:

(Ṽ, p′) oo //

��

(Y, D)

��
(V, p′) oo // (X, E)

where (Y, D) is the hyperbolic Looijenga pair with D2 = −52, and (X, E) is the
Looijenga pair with E given by (3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2).

From [4, Figure 12], the Type III anti-canonical pairs of (6, 9) and
(3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2) are given. Similar way we can get the Type III anti-
canonical pairs of (3, 2, 2, · · · , 2︸ ︷︷ ︸

49

) and (52), whose quotient under G gives the above

Type III anti-canonical pairs, up to resolution of singularities.
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